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Abstract 

Recent work has shown how information theory extends conventional full-rationality game 

theory to allow bounded rational agents. The associated mathematical framework can be used to 

solve constrained optimization problems. This is done by translating the problem into an iterated 

game, where each agent controls a different variable of the problem, so that the joint probability 

distribution across the agents’ moves gives an expected value of the objective function. The 

dynamics of the agents is designed to minimize a Lagrangian function of that joint distribution. 

Here we illustrate how the updating of the Lagrange parameters in the Lagrangian is a form of 

automated annealing, which focuses the joint distribution more and more tightly about the joint 

moves that optimize the objective function. We then investigate the use of “semicoordinate” 

variable transformations. These separate the joint state of the agents from the variables of the 

optimization problem, with the two connected by an onto mapping. We present experiments 

illustrating the ability of such transformations to facilitate optimization. We focus on the special 

kind of transformation in which the statistically independent states of the agents induces a 

mixture distribution over the optimization variables. Computer experiment illustrate this for 

&sat constraint satisfaction problems and for unconstrained minimization of N K  functions. 

Subject Classification: programming: nonlinear, algorithms, theory; probability: applications 

Area of Review: optimization 
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1 Introduction ? L 

1.1 Distributed optimization and control with Probability ColIectives 

As first described in (Wolpert 2003a, Wolpert 2004a), it turns out that one can translate many of 

the concepts from statistical physics, game theory, distributed optimization and distributed control 

into one another. This translation is based on the fact that those concepts all involve distributed 

systems in which the random variables are, at any single instant, statistically independent. (What 

is coupled is instead the distributions of those variables.) Using this translation, one can transfer 

theory and techniques between those fields, creating a large common mathematics that connects 

them. This common mathematics is known as Probability Collectives (PC). Its unifying concern 

is the set of probability distributions that govern any particular distributed system, and how to 

manipulate those distributions to optimize one or more objective functions. See (Wolpert, Tumer 

& Bandari 2003, Wolpert & Tumer 2001) for earlier, less formal work on this topic. 

In this paper we consider the use of PC to solve constrained optimization and/or control prob- 

lems. Reflecting the focus of PC on distributed systems, its use for such problems is particularly 

appropriate when the variables in the collective are spread across many physically separated agents 

with limited inter-agent communication (e.g., in a distributed design or supply chain application, 

or distributed control). A general advantage of PC for such problems is that since they work with 

probabilities rather than the underlying variables, they can be implemented for arbitrary types of 

the underlying variables. This same characteristic also means they provides multiple solutions, each 

of which is robust, along with sensitivity information concerning those solutions. An advantage 

particulary relevant to optimization is that the distributed PC algorithm can often be implemented 

on a parallel computer. An advantage particularly relevant to control problems is that PC  algo- 

rithms can, if desired, be used without any modelling assumptions about the (stochastic) system 

being controlled. These advantages are discussed in more detail below. 

1.2 The Probability Collectives Approach 

Bmadly speaking, the PC approich to o=tim~zation/control is as follows. First one maps the 

provided problem into a multi-agent collective. In the simplest version of this process one assigns 

a separate agent of the collective to determine the value of each of the variables xi E Xi in the 
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‘ .  
problem that we control. So for example if the i’th variable can only take on a finite number 

of values, those [Xi[ possible values constitute the possible moves of the i’th agent.’ The value 
1 . ‘  . 

of the joint set of n variables (agents) describing the system is then x = [ T I , .  . . , z,] E X with 
A X = X‘ x . . . x X,? 

Unlike many optimization methods, in PC the variables are not manipulated directly. Rather a 

probability distribution is what is manipulated. To avoid combinatorial explosions as the number 

of dimensions of X grows, we must restrict attention to a low-dimensional subset of the space of 

all probability distributions. We indicate this by writing our distributions as q E Q over X. The 

manipulation of that q proceeds through an iterative process. The ultimate goal of this process is 

to induce a distribution that is highly peaked about the x optimizing the objective function G(x), 

sometimes called the world cost or world utility function. (In this paper we only consider problems 

with a single overall objective function, and we arbitrarily choose lower values to be better, even 

when using the term “utility”.) 

In the precise algorithms investigated here, at the start of any iteration a single Lagrangian 

function of q, L : Q --+ R, is specified, based on G(x) and the associated constraints of the 

optimization problem. Rather than minimize the objective function over the space X, the algorithm 

minimizes that Lagrangian over q E Q. This is done by direct manipulation of the components of 

q by the agents. 

After such a minimization of a Lagrangian, one modifies the Lagrangian slightly. This is done 

SO that the q optimizing the new Lagrangian is more tightly concentrated about x that solve our 

optimization problem than is the current q. One then uses the current q as the starting point for 

another process of having the agents minimize a Lagrangian, this time having them work on that 

new Lagrangian. 

At the end of a sequence of such iterations one ends up with a final q. That q is then used to 

determine a final answer in X, e.g., by sampling q, evaluating its mode, evaluating its mean (if that 

is defined), etc. For a properly chosen sequence of Lagrangians and algorithm for minimizing the 

Lagrangians, this last step should, with high probability, provide the desired optimal point in X. 
Fer the c las  ef LagraqTi2zs used ic this p q y ,  the secp!cce cf rnici3iz2ticlls cf L2g2cgkZs is 

closely related to simulated annealing. The difference is that in simulated annealing an inefficient 

Metropolis sampling process is used to implicitly descend each iteration’s Lagrangian. By explicitly 
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manipulating q, PC allows for more efficient descent. ’ .  1 

In this paper we shall consider the case where Q is a product space, q(x) = n i q i ( x i ) .  The 

associated formulation of PC is sometimes called “Product Distribution” theory. It corresponds 

to noncooperative game theory, with each qi being agent 2’s “mixed strategy” (Wolpert 2004a, 

Fudenberg & Tirole 1991). Our particular focus is the use of such product distributions when X 

is not the same as the ultimate space of the optimization variables, 2. In this formulation - a 

modification of what was presented above - there is an intermediate mapping,from X -+ 2, and 

the provided G is actually a function over 2, not (directly) over X .  Such intermediate mappings are 

called semicoordinate systems, and going from one to another is a semicoordinate transformation. 

As elaborated below, such transformations allow arbitrary coupling among the variables in 2 while 

preserving many of the com’putational advantages of using product distributions over X. 

1.3 Advantages of Probability Collectives 

There are many advantages to working with distribution in Q rather than points in X .  Usually 

the support of q is all of X, i.e., the q minimizing the Lagrangian lies in the interior of the unit 

simplices giving Q. Conversely, any element of X can be viewed as a probability distribution on the 

edge (a vertex) of those simplices. So working with X is a special case of working with &, where 

one sticks to the vertices of Q. In this, optimizing over Q rather than X is analogous to interior 

point methods. Due to the breadth of the support of q ,  minimizing over it can also be viewed as 

a way to allow information from the value of the objective function at all x E X to be exploited 

simultaneously. 

Another advantage, alluded to above, is that by working with distributions & rather than 

the space X ,  the same general PC approach can be used for essentially any X, be it continuous, 

discrete, time-extended, mixtures of these, etc. (Formally, those different spaces just correspond 

to different probability measures, as fa r  as PC is concerned.) For expository simplicity though, 

here we will work with finite X, and therefore have probability distributions rather than density 

functions, sums rather than integrals, etc. See in particular (Bieniawski & Wolpert 2004a, Wolpert 

& Bieniawsici 2004a, Woipert 2004b, Woipert 2004~) for analysis explicitly for the case of i n h i t e  

X .  

Yet another advantage arises from the fact that even when X is finite, q E Q is a vector in 
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* .  

a Euclidean space. Accordingly the Lagrangian we are minimizing is a real-valued function of a 

Euclidean vector. This means PC allows us to  leverage the power of descent schemes for continuous 

spaces like gradient descent or Newton’s method - even if X is a categorical, finite space. So with 

, , ‘  . 

PC, schemes like “gradient descent for categorical variables” are perfectly well-defined. 

While the Lagrangians can be based on prior knowledge or modelling assumptions concerning 

the problem, they need not be. Nor does optimization of a Lagrangian require control of all variables 

X (i.e., some of the variables can be noisy). This allows PC to be very broadly applicable. 

1.4 Connecdion with other sciences 

A more general advantage of PC is how it relates seemingly disparate disciplines to one another. In 

particular, it can be motivated by using information theory to relate bounded rational game theory 

to statistical physics (Wolpert 2003a, Wolpert 2004~). This allows techniques from one field to 

be imported into the other field. For example, as illustrated below, the grand canonical ensemble 

of physics can be imported into noncooperative game theory to analyze games having stochastic 

numbers of the players of various types. 

To review, a noncooperative game consists of a sequence of stages. At the beginning of each 

stage every agent (aka “player”) sets a probability distribution (its “mixed strategy”) over its 

moves (Fudenberg & Tirole 1991, Aumann & Hart 1992, Basar & Olsder 1999, Fudenberg & Levine 

1998). The joint move at the stage is then formed by agents simultaneously sampling their mixed 

strategies at that stage. So the moves those agents make at  any particular stage of the game 

are statistically independent and the distribution of the joint-moves at any stage is a product 

distribution -just like in PD theory. 

This does not mean that the moves of the agents across all time are statistically independent 

however. At each stage of the game each agent will set its mixed strategy based on information 

gleaned from preceding stages, information that in general will reflect the earlier moves of the other 

agents. So the agents are coupled indirectly, across time, via the updating of the { q i } 2 1  at the end 

of each stage. 

AnaI,!ogous!j., consider again t-3 iterzt~;e PD algarithm out!ined &a\re, in p~-tic&r the 

process of optimizing the Lagrangian within some particular single iteration. Typically that process 

proceeds by successively modifying q across a sequence of timesteps. In each of those timesteps 
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q ( x )  = n, gz(x2) is first sampled, and then it is updated based on all previous samples. S O  just 

like in a noncooperative game there is no direct coupling of the values of the underlying variables 

{z,}at any particular timestep (q  is a product distribution). Rather just like in a noncooperative 

game, the variables are indirectly coupled, across time ( i e ,  across timesteps of the optimization), 

via coupling of the distributions q2(x , )  at different timesteps. 

, ’ 
1 

In addition, information theory can be used to show that the bounded rational equilibrium of any 

noncooperative game is the q optimizing an associated “maxent Lagrangian” L(q) (Wolpert 2004~).  

(That Lagrangian is minimized by the distribution that has maximal entropy while being consistent 

with specified values of the average payoffs of the agents.) This Lagrangian turns out to be exactly 

the one that arises in the version of PC considered in this paper. So bounded rational game theory 

is an instance of PC. 

Now in statistical physics often one wishes to find the distribution out of an allowed set of 

distributions (e.g., Q) with minimal distance to a fixed target distribution p E P, the space of all 

possible distributions over X. Perhaps the most popular choice for a distance measure between 

distributions is the Kullback-Leibler (KL) distance3: D(ql(p) C ,  q ( x )  In(q(x)/p(x)) (Cover & 

Thomas 1991). As the KL distance is not symmetric in its arguments p and q we shall refer to 

D(qllp) as the qp KL distance (this is also sometimes called the exclusive KL distance), and DCpllq) 

as the pq distance (also sometimes called the inclusive KL distance). 

Typically in physics p is given by one of the statistical “ensembles”. An important exam- 

ple of such KL minimization arises with the Boltzmann distribution of the canonical ensemble: 

p ( x )  c( exp[-H(x)/T], where H is the “Hamiltonian” of the system. The KL distance D(qI1p) 

to the Boltzmann distribution is proportional to the Gibbs free energy of statistical physics. This 

free energy turns out to  be identical to the maxent Lagrangian considered in this paper. Stated 

differently, if one solves for the distribution q &om one’s set that minimizes qp KL distance to the 

Boltzmann distribution, one gets the distribution from one’s set having maximal entropy, subject 

to the constraint of having a specified expected value of H .  When the set of distributions one’s 

considering is Q, the set of product distributions, this q minimizing qp KL distance to p is called 

a “mean-field approxirmiion” to p .  So mea-Seld theory is as instame of PC. 

This illustrates that bounded rational games and the mean-field approximation to Boltzmann 

distributions are essentially identical. To relate them one equates H with a common payoff function 
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G. The equivalence is completed by then identifying each (independent) agent with a different one 

of the (independent) physical variables in the argument of the Hamiltonian.* 
’ .  ‘ .  

This connection between these fields allows us to exploit techniques from statistical physics 

in bounded rational game theory. For example, as mentioned above, rather than the canonical 

ensemble, we can apply the grand canonical ensemble to bounded rational games. This allows us 

to consider games in which the number of players of each type is stochastic (Wolpert 2004~).  

1.5 The contribution of this paper 

Use of a product distribution space Q for optimization/control is consistent with game theory (and 

more generally multi-agent systems). This choice also results in a highly parallel algorithm, and is 

well-suited to control problems that are inherently distributed. Nonetheless, other concerns may 

dictate different Q. In particular, in many optimization tasks we seek multiple solutions far apart 

from one another. For example, in Constraint Satisfaction Problems (CSPs) (Dechter 2003), the 

goal is to identify all feasible solutions which satisfy a set of constraints, or to show that none exist. 

Typically when there are multiple feasible solutions they are vary far from one another. For small 

problem instances exhaustive enumeration techniques like branch-and-bound are typically used to 

identify all such feasible solutions; we are interested in larger problems. 

In cases like these, where we desire multiple far-apart solutions, use of PC with a product 

distribution may be a poor choice. The problem is that if each distribution qi is peaked about 

every value of x, which occurs in at least one of the multiple solutions, then in general there will 

be spurious peaks in the product q(x) = n q i ( ( ~ i ) ,  i.e., Q(X) may be peaked about some x that are 

not solutions. On the other hand the alternative scenario, where each qi is only peaked about a 

few of the solutions, does not provide us the desired many solutions. To address this we might 

descend the Lagrangian many times, beginning from different starting points (i.e., different initial 

Q). However there is no guarantee that multiple runs will each generate different solutions. 

PC offers a simple solution to this problem that allows one to still use product distributions: 

extend the event space underlying our product distributions so that a single game provides mul- 

tiple distinct szlutizns tcj sptimizatim prcb!e=: at snce. Fsrxdy, this is 8 semicmrdin8te 

transformation. Intuitively speaking, the transformation considered here recasts the problem in 

terms of a “meta-game” by cloning the original game into several simultaneous games, with a4 
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independent set of agents for each game. We also have a supervisor agent who chooses what game 

is to be played. We then form a Lagrangian for the meta-game that is biased towards having any 

agents that control the same variable in different games have different mixed strategies from one 

another. The joint strategies for each of the separate games in the meta-game then give US OUT set 

of multiple solutions to the original game. The supervisor agent sets the probability distribution of 

which such solution is used. Since in general the resultant distribution across the variables being 

optimized (i.e., across 2) cannot be written as a single product distribution, it provides coupling 

among those variables. 

More precisely, recall that the space of arguments to our objective function is 2, and our 

product distributions are instead over XI with the “semicoordinate system” being the map from 

this space to 2 (Wolpert & Bieniawski 2004a, Wolpert 20044. Before transformation of the 

semicoordinate system, X = 2, and product distributions over X cannot give coupled distributions 

over 2. However we will change X from 2 and change the semicoordinate system in an associated 

way. We then consider product distributions over the new X (i.e., the noncooperative game is 

played in X, not 2). By appropriate choice of the semicoordinate transformation, such distributions 

corresponds to coupled distributions across 2. In general any Bayes net topology can be achieved 

with an appropriate semicoordinate transformation (Wolpert 2004d, Wolpert & Bieniawski 20044. 

Different product distributions over 2 correspond to different Bayes nets having that same topology. 

Here we consider a X that results in a mixture of M product distributions 2, (Macready & 

Wolpert 2004b) 
M 

Intuitively, qo is the distribution over the moves of the supervisor agent, with m being the game 

that agent chooses. This allows for the determination of M solutions at once. At the same time, 

due to  the entropy term in the Lagrangian, it “pushes” the separate products qm(z)  in the mixture 

apart. This biases the algorithm to trying to find separated solutions, as desired. 

In Sec. 2 we review how one arrives at the Lagrangian considered in this paper, the maxent 

Lagrangian. Then in Sec. 3 we review two elementary techniques introduced in (Wolpert & 

Bieniawski 2004b, Wolpert 2003a, Wolpert 2004b) for updating a product distribution q to minimize 

the associated Lagrangian. In the experiments reported below, all terms in those update rules can 
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be calculated in closed form. This is not true in general though. In Sec. 4 we review a set of 

Monte-Carlo techniques for addressing such general scenarios. 
I .  ' .  

We review semicoordinate transformations in Sec. 5, with particular attention for how mixture 

models may be seen as a product distributions over a different space. In Sec.6 we analyze the 

minimization of the maxent Lagrangian associated with mixture-inducing semicoordinate transfor- 

mations. In that section we also relate our maxent Lagrangian for mixture distributions to the 

Jensen-Shannon distance over X. Experimental validation of these techniques is then presented 

for the k-satisfiability CSP problem (section 7.1) and the N K  (section 7.2) optimization problems. 

These sections consider both situations where the semicoordinate transformation is fked upfront 

and those where it is found dynamically. 

We end with a synopsis of some other techniques for updating a product distribution q to 

minimize the associated Lagrangian. This synopsis serves as the basis for a discussion of the 

relationship between PC and other techniques. The distinguishing feature of PC is that it does not 

treat the variable x as the fundamental object to be optimized, but raliher the distribution across 

it, q.  Furthermore, samples of that distribution are only used if necessary to estimate quantities 

that cannot be evaluated other ways. The fundamental objective function is stated in terms of q. 

It should be emphasized that like all of PC, the techniques presented in this paper can readily be 

applied to many problems other than constrained optimization. For example, PC provides a natural 

improvement to the Metropolis sampling algorithm (Wolpert & Lee 2004) , which the techniques 

of this paper should be able to improve further. See (Antoine, Bieniawski, Kroo & Wolpert 2004, 

Wolpert & Bieniawski 2004a, Bieniawski, Wolpert & Kroo 2004, Bieniawski & Wolpert 2004b) for 

other examples and experiments. 

2 The Lagrangian for Product Distributions 

We begin by considering the case of the identity semicoordinate system, X = 2. As discussed above, 

we consider qp distance to the T-parameterized Boltzmann distribution p(x) = exp[-G(x)/T]/Z(T) 

where Z ( T )  is a normalization constant. At low T the Boltzmann distribution is concentrated on 

x having low G values, so that the product distribution with minimal qp distance to it would be 

expected to  have the same behavior. Accordingly, one would expect that by taking qp KL distance 
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to this distribution as one’s Lagrangian, and modifying the Lagrangian from one iteration to the , , , 

next by lowering T ,  one should end up at a q concentrated on x having low G values. (See (Wolpert 

& Bieniawski 2004b, WoIpert 2004b, Wolpert 2004c) for a more detailed formal justification of using 

this Lagrangian based on solving constrained optimization problems with Lagrange parameters.) 

More precisely, the qp KL distance to the Boltzmann distribution is the maxent Lagrangian, 

up to irrelevant additive and multiplicative constants. Equivalently, we can write it as 

where 4 1/T, up to an irrelevant overall constant. In these equations the inner product IE,(G) 4 

C,q(x )G(x)  is the expected value of G under q ,  and S(q) f -C,q(x)lnq(x) is the Shannon 

entropy of q .  

For q’s which are product distributions S(q) = xi S(qi) where S(qi) = -Ezi qi(si) In qi(zi). 

Accordingly, we can view the maxent Lagrangian as equivalent to a set of Lagrangians, Ci(q) = 

CZi E,_,[G(zi, x-;)]qi(zi)--TSi(qi), one such Lagrangian for each agent i so that L(q) = 

The first term in C is minimized by having perfectly rational players, i.e. by players who concen- 

trate all their probabiIity on the moves that are best for them, given the distributions over the 

agents. The second term is minimized by perfectly irrational players, i.e., by a perfectly uniform 

joint mixed strategy q .  So T specifies the balance between the rational and irrational behavior of 

the players. In particular, for T 3 0, by minimizing the Lagrangian we recover the Nash equilibria 

of the game. Alternatively, horn a statistical physics perspective, where T is the temperature of 

the system, this maxent Lagrangian is simply the Gibbs free energy for the Hamiltonian G. 

Li(q).5 

Since we are interested in problems with constraints, we replace G in Eqs. (1) and (2) with 

C 

a= 1 

where G is the original objective function and the ca are the set of C equality constraint functions 

that are required to be equal to zero. The A, are the Lagrange multipliers that are used to enforce 
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the constraints. Collectively, we refer to the Lagrange multipliers with the C-vector A. 

In CSP’s we take the original objective function to be the constant function 0. In addition, 

the constraints are all equality constraints, so a saddle point of the Lagrangian over the space of 

possible q and X is a solution of our problem. Note though that we don’t have to find the exact 

saddle point; in general sampling from a q close to the saddle point will give us the x’s we seek. 

* .  1 .  

An alternative approach to incorporating constraints would start by weakening them so that 

they can be violated. We would then iteratively anneal down those weaknesses, i.e., strengthen the 

constraints, to where they are not violated. In this approach we replace the maxent Lagrangian 

formulation encapsulated in Eq.’s (2) and (3) with 

In each iteration of the algorithm 0, X are treated as Lagrange parameters and one solves for their 

values that enforce the equality constraints IE,(G) = TG, and the C constraints IEp(ca) = ̂ /a while 

also minimizing L(q, p, A). In the usual way, since our constraints are all equalities, one can do 

this by finding saddle points of L(q,p,)o. The next iteration would then start by modifying our 

Lagrangian by shrinking the values YG, {ya}  slightly before proceeding to a new process of finding 

a saddle point. 

For pedagogical simplicity, here we do not consider this alternative approach, but concentrate 

on the Lagrangian of Eq. (1) with the G of Eq. (3). Note that the vectors {q i }  must be probability 

distributions. So there are implicit constraints our solution must satisfy: 0 5 qi(ii) 5 1 for all i 

and xi, and E,, qi(zi) = 1 for all i. To reduce the size of our equations we do not explicitly write 

those constraints. 

3 Minimizing the maxent Lagrangian 

For k e d  p, our task is to find a saddle point of L ( q , X ) .  In “first order methods” such a saddle 

point is found by iterating a two-step process. In the first step the Lagrange parameters X are 

fixed and one solves for the q that minimizes the associated L. in the second step one then freezes 

that q and updates the Lagrange parameters. There are more sophisticated ways of finding saddle 

” 6  T 
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points (Grantham 2004), and more generally one can use modified versions of the Lagrangian (e.g., 

an augmented Lagrangian (Bertsekas 1996)). Here for pedagogical simplicity we do not consider 

such more sophisticated approaches. 

, 

In this section we review two approaches to finding the { q i }  for k e d  Lagrange multipliers A. 

We also describe our approach for the second step of the first order method, i.e., we describe how we 

use gradient ascent to update the Lagrange multipliers A, for k e d  q. See (Wolpert 2003a, Wolpert 

& Bieniawski 2004b, Wolpert 2004b) for further discussion of these approaches as well as the many 

others one can use. 

3.1 Brouwer Updating 

At each step t the direction in the simplex Q that, to first order, maximizes the drop in L is given 

by (-1 times) 

V q W  VqL(q) - r1W ( 5 )  

In this equation the qi(zi) component of the gradient (one for every agent i and every possible 

move zi by the agent) is 

where 

A A with x-i = [xi,... ,zi-i,zi+i,.-e ,zn] and q-i(x-i) = ~ ~ = l , j + q ~ ( z ~ ) .  q ( q )  is the vector that 

needs to be added to V,L(q) to get it back into Q7 The qi(zi) component of q(q),  is equal to 

where JXiJ is the number of possible moves zi. Not that for any agent i, all of the associated 

components of q(q) ,  namely q i ( z l ) ,  . . . , qi(zlx,l), share the same value qi (q) .  This choice ensures 

that cz, q i ( z i )  = 1 after the gradient update to the values qi(zi). 

The expression in Eq. (3.1) is the expected payoff to agent i when it plays move zi, under the 
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I .  

distribution q-i across the moves of all other agents. Setting Q,L(q) to zero gives the solution 
‘ . I .  

Brouwer’s fixed point theorem guarantees the solution of Eq. (8) exists for any G (Wolpert 2004a, 

Wolpert 2003a). Hence we call update rules based on this equation Brouwer updating. 

Brouwer updating can be done in parallel on all the agents. One problem that can arise here 

is “thrashing”. Each agent i is adopting the qi that would be optimal if all the other agents 

didn’t change their distributions. However they do change their distributions, and thereby at least 

partially confound agent i. One way to address this problem is to have agent i not use the current 

value IE t (Glzi) alone to update q:(zi), but rather use a weighted average of all values E t t  (Glzi) 
Q-, Q-, 

for t’ _< t ,  with the weights shrinking the further into the past one goes. This introduces an inertia 

effect which helps to stabilize the updating. (Indeed, in the continuum-time limit, this weighting 

becomes the replicator dynamics (Wolpert 2004 d) .) 

A similar idea is to have agent i use the current IE t (Glzi) alone, but have it only move part of 

the way the parallel Brouwer update recommends. Whether one moves all the way or only part-way, 

what agent i is interested in is what distribution will be optimal for the next distributions of the 

other agents. Accordingly, it makes sense to  have agent i predict, using standard time-series tools, 

what those future distributions will be. This amounts to predicting what the next vector of values 

of E t (Glzi) will be, based on seeing how that vector has evolved in the recent past. See (Shamma 

& Arslan 2004) for related ideas. 

9- I 

Q-* 

. 

Another way of circumventing thrashing is to have the agents update their distributions serially 

(one after the other) rather than in parallel. See (Wolpert & Bieniawski 2004~) for a description of 

various kinds of serial schemes, as well as a discussion of partial serial, partial parallel algorithms. 

3.2 Nearest-Newton Updating 

To evaluate the gradient one only needs to evaluate or estimate the terms E,?, (Glzi) for all agents 

(see below and (Wolpert 2003~’ Wolpert 20044). So gradient descent is typically straight-forward. 

It is also usually simple to evaluate the Hessian of our Lagrangian. However conventional Newton’s 

descent is often intractable for large systems, since that Hessian is so big that inverting often it 
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isn't feasible. 

Of course there are schemes like conjugate gradient or quasi-Newton that can exploit second 

order information even when the Hessian cannot be inverted. However the special structure of the 

Lagrangian also allows second order information to be used for a simple variant of Newton descent. 

The associated update rule is called Nearest-Newton updating (Wolpert & Bieniawski 2004b); we 

review it here. 

To derive Nearest-Newton we begin by considering the Lagrangian IE,(G) - TS(7r), for an 

unrestricted probability distribution T . ~  This Lagrangian is a convex function of 7r with a diagonal 

Hessian. So given a current distribution d we can make an unrestricted Newton step of this 

Lagrangian to a new distribution dfl. That new distribution typically is not in &, even if the 

starting distribution is. However we can solve for the qt+I E Q that is nearest to dfl, for example 

by finding the qt+' E G! that minimizes qp KL distance D(pllq) to that new point. 

More precisely, the Hessian of IE,(G) - T S ( r ) ,  d2C/&r(x)&r(x'), is diagonal, and so is simply 

inverted. This gives the Newton update for d: 

which is normalized if 7rt is normalized and where ai is a step size. As 7rt will typically not belong 

to  Q we find the product distribution nearest to n t f l  by minimizing the KL distance D(.rrt+lllq) 

with respect to  q.  The result is that q i ( z i )  = 7rf+l(zi), i.e. qi is the marginal of dfl given by 

integrating it over x-i. 

Thus, whenever 7rt itself is a product distribution, the update rule for q i ( z i )  is 

This update maintains the normalization of qi, but may make one or more q2f+l(zi) greater than 

1 or less than 0. In such caes  we set qf" to be valid product distribution nearest in Euclidean 

distance (rather than KL distance) to the suggested Newton update. 
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' , 3.3 Updating Lagrange Multipliers 

In order to satisfy the imposed optimization constraints {ca(x)} we must also update the Lagrange 

multipliers. To minimize communication between agents this is done in the simplest possible way 

- by gradient descent. Taking the partial derivatives with respect to A, gives the update rule 

where ai is a step size and q: is the local minimizer of L: determined as above at the old settings, 

At, of the multipliers. 

3.4 Other descent schemes 

It should be emphasized that PC encompasses many approaches to optimization of the Lagrangian 

that differ from those used here. For example, in (Bieniawski & Wolpert 2004a, Wolpert 20044 

there is discussion of alternative types of descent algorithms that are related to block relaxation, 

as well as to the fictitious play algorithm of game theory (Fudenberg & Tirole 1991, Shamma & 

Arslan 2004) and multi-agent reinforcement learning algorithms like those in collective intelligence 

(Wolpert & Tumer 2001, Wolpert et al. 2003). 

As another example, see (Wolpert & Bieniawski 2004b, Wolpert 2004~) for discussions of using 

pq KL distance (i.e., D(p(1q))  rather than qp distance. Interestingly, as discussed below, that alter- 

native distance must be used even for descent of qp distance, if one wishes to use 2nd order descent 

schemes. (Wolpert 2004b, Wolpert 2004c) discusses using non-Boltzmann target distributions p ,  

and many other options for what functional(s) to descend. 

4 Statistical estimation to update q 

Using either of the update rules Eqs. (8) or (9) requires knowing IE,ti(Glzi), defined in Eq. (3.1). 

However, often we cannot efficiently calculate all the terms lE t (Glzi). To use our update rules in 

such situations we can use Monte Carlo sampling, as described in this section. 

Q-1 
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4.1 Monte Carlo sampling 

In the Monte Carlo approach, at each timestep every agent i samples its distribution qi to get a 

point zi. Since we have a product distribution q, these samples provides us with a sample x of the 

full joint distribution g. By repeating this process L times we get a “block” of such joint samples. 

The G values in that block can be used by each agent separately to estimate its updating values 

E,ttJGlzi), for example simply by uniform averaging of the G values in the samples associated with 

each xi. Note that the single set of samples can be used no matter how many agents are in the 

system; we don’t need a different Monte Carlo process for each agent to estimate their separate 

E,t%(G I 4. 
All agents (variables) sample moves (variable settings) independently, and coupling occurs only 

in the updates of the gi. As we have seen this update (even to second order) for agent i depends 

only on the conditional expectations E,-i (GJzi) where q-i describes the strategies used by the 

other agents. Thus, if we are using Monte Carlo, then the only information which needs to be 

communicated to each agent is the G values upon which the estimate will be based. Using these 

values each agent independently updates its strategy (its q i )  in a way which collectively is guaranteed 

to lower the Lagrangian. 

If the expectation is evaluated analytically, the ith agent needs the q j  distributions for each of 

the j agents involved in factors in G that also involve i. For objective functions which consists of 

a sum of local interactions each of which individually involves only a small subset of the variables 

(e.g. the problems considered here), the number of agents that i needs to communicate with may 

be much smaller than n. 

4.2 Difference utilities for faster Monte Carlo convergence 

The basic Monte Carlo approach outlined above can be slow to converge in high-dimensional prob- 

lems. For the problems considered in this paper this is irrelevant, since IE 9-1 t (Glzi) may be efficiently 

calculated in closed form for all agents i and their moves xi, so we don’t need to use Monte car10 

sampling. For completeness though here we review a variant of the basic Monte Carlo approach 

that converges far  more quickly. See (Wolpert 2003a, Wolpert & Bieniawski 2004b) for details. 

Say we are at a timestep t at the end of a Monte Carlo block, and consider the simplest updating 
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, .  
rule. This is gradient descent updating, in which we wish to update qi at a timestep t by having 

each agent i take a small step in the direction (cf. Eq. (5)) 
' .  

~ 

where qi(q)  was defined in Eq. (7), 1 is the vector of length (Xi( all of whose components are 1, 

and x:,. . . , xixi' are the [ X i /  moves available to agent i. In general, there will be some error in 

i's estimate of that step, since it has limited information about qti .  Presuming quadratic loss 

reflects quality of the update, for agent i the Bayes-optimal estimate of its update is the posterior 

expect ation 

Jdq'  p (qLi  I ni) f i j G  

where ni is all the prior knowledge and data that i has, and the dependence of f i i G  on q-i t is 

i m p l i ~ i t . ~  P(q t i In i )  is a probability distribution over likely values of 9.5, given the information ni 

available to agent i. 

Now agent i can evaluate lnqi(xi) for each of its moves xi exactly. However to perform its 

update it still needs the integrals 

(recall Eq. (6)). In general these integrals can be very difficult to evaluate. As an alternative, we 

can replace those integrals with simple maximum likelihood estimators of them, i.e., we can use 

Monte Carlo sampling. In this case, the prior information, ni, available to the agent is a list, 2, of 

L joint configurations x along with their accompanying objective values G(x). 

To define this precisely, for any function h(x), let h(ni) be a vector of length (Xi( which is 

indexed by xi. The xi component of h(ni) is indicated as iZi(ni). Each of its components is given 

by the information in ni. The xi'th such component is the empirical average of the values that h 

had in the LZi samples from the just-completed Monte Carlo block when agent i made move xi, 

i.e. 
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where CZi is the set of x in C whose ith component is equal to zi, and where LZi = ICxt\. Given 

this notation, we can express the components of the gradient update step for agent i under the 

simple maximum likelihood estimator as the values 

, ,' , 

where 

Unfortunately, often in very large systems the convergence of G(ni) with growing L is very 

slow, since the distribution sampled by the Monte Carlo process to produce ni is very broad. This 

suggests we use some alternative estimator. Here we focus on estimators that are still maximum 

likelihood, just with a different choice of utility. To that end, first posit that the differences 

IEq?,(GIxi) - IE,~i(Glz~), one for each (xi, z:) pair, are unchanged when one replaces G with some 

other function gi. So the change is equivalent to adding a constant to G, as far as those differences 

are concerned. This means that if agent i used q t i  to evaluate its expectation values exactly, then 

its associated update would be unchanged under this replacement. (This is due to cancellation 

of the equivalent additive constant with the change that arises in vi(ni) under the replacement of 

G(x) with gZ(x)). It is straight-forward to verify that the set of all gi guaranteed to have this 

character, regardless of the form of q, is the set of diference utilities, Si(.) = G(z) - Di(x-i) for 

some function Di. G itself is the trivial case Di(x-i) = 0 Vzi. 

On the other hand, if we use a difference utility rather than G in our maximum likelihood 

estimator then it is the sample values of P(g2) that generate ni, and we use the associated zi- 

indexed vector &(ni) rather than Gxi(ni) to update each qi.  For well-chosen DZ it may typically 

be the case that $(ni) has a far smaller standard deviation than does G(ni). In particular, if 

the number of coordinates coupled to i through G does not grow as the system does, often such 

difference utility error bars will not grow much with system size, whereas the error bars associated 

with G will grow greatly. Another advantage of difference utilities is that very often the Monte 

Carlo values of a difference utility are far easier to evaluate than are those of G, due to cancellation 

in subtracting D'. 
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* .  

To make this more precise we can solve for the difference utility with minimal error bar. First 

as a notational matter, extend the definition of f i t G  by replacing G with (arbitrary) h throughout, 

writing that extended version a s  f i i h .  Then assuming no Lxo = 0, we are interested in the g z  

minimizing the data-averaged quadratic error, 

where P(q-i) reflects any prior information we might have concerning q-i (e.g., that it is likely that 

the current fi>91 is close to that estimated for the previous block of L steps), and nf is the set of 

values of the private utility contained in ni. (The associated zi values, n?, are independent of gz 

and q-i and therefore for our purposes can be treated as though they are fixed.) 

Now the components of fii9'(ni) (one for each xi) are not independent in general, being coupled 

via fji(ni). To get an integrand that involves only independent variables, we must work with only 

one xi component at a time. To that end, rewrite the data-averaged quadratic error as 

J J 
Xi 

where f$ is the qi(zi) component of f i > g ' .  Our results will hold for all q-i, so we ignore the outer 

integral and focus 01 

For any xi the inner 

a sum of two terms 

ntegral can be decomposed with the famous bias-variance decomposition into 

(Duda, Hart & Stork 2000).10 The first of the two terms in our sum is the 

is the expectation (over all possible sets of Monte Carlo sample utility values nf) of f$fi(ni). The 

bias reflects the systematic trend of our sample-based estimate of f$f to differ from the actual 

f$$. When bias is zero, we know that on average our estimator will return the actual value it's 

estimating . 
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The second term in our sum is the variance, 

In general variance reflects how much the value of our estimate “bounces around” if one were to 

resample our Monte Carlo block. In our context, it reflects how much the private utility of agent 

i depends on its own move zz versus the moves of the other agents. When i’s estimator is isolated 

from the moves of the other agents f$f (n,) is mostly independent of the moves of the other agents, 

and therefore of nz. This means that variance is low, and there is a crisp “signal-to-noise” guiding 

2’s updates. In this situation the agent can achieve a preset accuracy level in its updating with a 

minimal total number of samples in the Monte Carlo block. 

Plug the general form for a difference utility into the formula for &f(n2) to see that (due to 

cancellation with the fj(n,) term) its na‘-averaged value is independent of D2.  Accordingly bias must 

equal 0 for difference utilities. (In fact, difference utilities are the only utility that is guaranteed to 

have zero bias for all q-z . )  So our expected error reduces to the sum over all x, of the variance for 

each 2,.  

For each one of those variances again use Eq. 11 with G replaced by g2 throughout to expand 

&f(n,). Since the qz(xz) terms in that expansion are all the same constant independent of n2, they 

don’t contribute to the variance. Accordingly we have 

Since nr is fixed and we are doing IID sampling, the two expressions inside the variance function 

are statistically independent. In addition, the variance of a difference of independent variables is 
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the sum of the variances. Accordingly, the sum over all zi of our variances is (cf. Eq. (14)) 
* .  

where the third equation follows from the second by using the trivial identity E, Xbf, F(b) = 

E, F(a)  Eb#, 1 for any function F .  

Since for each such xi we are doing L,,-fold IID sampling of an associated fixed distribution, 

the variance for each separate zi is of the form 

for a fixed distribution ~ ( y l ,  y2, . . . , yLzi ) = n:zl ~ ( g j i j > .  1.3Je c m  agaiE use t h e  deccmpcsitim of a 

variance of a sum into a sum of variances to evaluate this. With the distribution qt implicit, define 

the single sample variance for the value of any function H ( z ) ,  for move xi, as 

This gives 

Collecting terms, we get 

Now Var(A(T)) = (1/2) P( t~ )P( t z ) [A( t l )  - A(t2)I2 for any random variable T with dis- 
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tribution P(t) .  Use this to rewrite the sum in Eq. (21) as 

x’ .,x“ 
-2 -* Xi 

Bring the sum over zi 

constant to get 

inside the other integrals, expand g z ,  and drop the overall multiplicative 

2 [G(zi ,  x!..~) - G(zi,x!!;) - { D ~ ( X ! . . ~ )  - Di(x!$)}] c xi L Z i  

For each xLi and x ” ~ ,  our choice of DZ minimizes the sum so long as the difference in the curly 

brackets obeys 

This can be assured by picking 

for all x-i. The associated difference utility, gi(x) = G ( x )  - Di(x-i) ,  is called the Aristocrat utility 

(AU). An approximation to it was investigated in (Wolpert & Turner 2001, Wolpert, Turner & 

Bandari 2002, Wolpert & Tumer 2002) and references therein. AU itself was derived in (Wolpert 

2003 b) .  

Note that AU minimizes variance of gradient descent updating regardless of the form of q. 

Indeed, being independent of q-,, it minimizes our original q-, integral in Eq. (13), regardless of 

the prior P(q- , ) .  For the same reason it is optimal if the integral is replaced by a worst-case bound 

over q-,. 

Sometimes not all the terms in the sum in AU can be stored, because and/or the block size 

is too large. In such a case nf must be averaged over as well as ny. That sum can be approximated 
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by replacing the Lx, values in the definition of AU with q(x,)L. This replacement also provides a 

way to address cases where one or more Lx, = O.I1 Similarly, for computational reasons it may be 

desirable to approximate the weighted average of G over all xi which defines AU. 

The sum over x: occurring in AU should not be confused with the sum over xi that pulls our 

gradient estimate back into the unit simplex. The sum here is over values of G for counterfactuals 

sample pairs (x:, x-,). (The other sum is over values of our gradient estimate at all of its arguments.) 

When the functional form of G is known it is often the case that there is cancellation which allows 

AU be calculated directly, in one evaluation, an evaluation which can be cheaper than that of G(x). 

When this is not the case their evaluation incurs a computational cost in general.12 This cost is 

offset by the fact that those evaluations allow us to determine the value of AU not just for the 

actual point (xz, x - ~ ) ,  but in fact for all points {(xi, X - , ) ~ Z :  E X,}. 

Nonetheless, there will be cases where evaluating AU requires evaluating all possible G(z/,, x-,), 

and where the cost of that is prohibitive, even if it allows us to update AU for all x, at once. 

Fortunately there are difference utilities that are cheaper to evaluate than AU while still having 

less variance than G. In particular, note that the weighting factor LT1/ c,; LYf in the formula for 

AU is largest for those x, which occur infrequently, i.e. that have low qz(xcz) .  This observation leads 

to the Tonder fd  Life lii-iiity (TVLU), which is an approximation to AU that (being a difference 

utility) also has zero bias: 

x* 2% 

clamp In this formula, xi 

agent i’s lowest probability move (Wolpert 2003a, Wolpert 2004u).13 

= arg min,, L,, or if we wish to be more conservative, arg min,, qi(xi), 

4.3 Discussion of Monte Carlo sampling 

Note that the foregoing analysis breaks down if any of the Lxi = 0. More generally it may break 

down if just one or more ofthe q(zi) are particularly small in comparison to the others, even if no Lxi 

is exactly zero. The reason for this is that our approximation of the average over n? with the average 

where no Lxi = 0 breaks down. Doing the exact calculation with no such approximation doesn’t 

fh the situation - Once we have to assign non-infinitesimal probability to LZi = 0, we’re allowing 
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a situation in which the gradient step would take us off the simplex of allowed q E &. We might 

try to compensate for this by reducing the stepsize, but in general the foregoing analysis doesn’t 

hold if stepsize is reduced in some situations but not in any others. (Variable stepsize constitutes 

a change to the update rule. Such a modification to the update rule must be incorporated into the 

analysis - which obviates the derivation of AU.) 

, ’ 

One way to address this scenario would be to simply zero out the probability of agent i making 

any move zz for which q i (xcz )  is particular small. In other words, we can redefine 2’s move space to 

exclude any moves if their probability ever gets sufficiently small. This has the additional advantage 

of reducing the amount of “noise” that agents j # i will see in the next Monte Carlo block, since 

the effect of agent i on the value of G in that block is more tightly constrained. 

There several ways to extend the derivation of AU, which only addresses estimation error for 

a single agent at a time, and for just that agent’s current update. One such extension is to have 

agent 2’s utility set to improve the accuracy of the update estimation for agents j # i. For example, 

we could try to bias qi to be peaked about only a few moves, thereby reducing the amount of noise 

those other agents j # i will see in the next Monte Carlo block due to variability in i’s move choice. 

Another extension is to have agent 2’s utility set to improve the accuracy of its estimate of its 

update for future Monte Carlo blocks, even at the expense of accuracy for the current block.. 

Strictly speaking, the derivation of AU only applies to gradient descent updating of q. Difference 

utilities are unbiased estimators for the Nearest Newton update rule, so long as each i estimates 

E,t(gZ) as qf(zi) times the estimate of E,t(gilzi), 

rather than as the empirical average over all samples of g*,’* 

However the calculation for how to minimize the variance must be modified. Redoing the algebra 
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, - . :  I .  above, the analog of AU for the Nearest Newton rule arises if we replace 

throughout the equation defining AU. Similar considerations apply to Brouwer updating as well. 

Nonetheless, in practice AU and WLU as defined above work well (and in particular far better than 

taking gz = G) for the other updating rules as well. 

For gradient descent updating, minimizing expected quadratic error of our estimator of IE t (Glzi) 

corresponds to making a quadratic approximation to the Lagrangian surface, and then minimizing 

the expected value of the Lagrangian after the gradient step (Wolpert 2003~).  More generally, 

and especially for other update rules, some other kind of error measure might be preferable. Such 

measures would differ from the bias-variance decomposition. We do not consider such alternatives 

here. 

Q- a 

Note that the agents are completely “blind” in the Monte Carlo process outline above, getting 

no information from other agents other than the values of G(x). When we allow some information 

to be transmitted between the agents we can improve the estimation of Eqti(Gjzi) beyond that 

of the simple Monte Carlo process outlined above. For example, say that a.t every timestep the 

agent i knows not just its own move xi, but in fact the joint move x. Then as time goes on it 

accumulates a training set of pairs {(x, G(x))}. These can be used with conventional supervised 

learning algorithms (Duda et al. 2000) to form a rough estimate of the entire function G, G. Say 

that in addition i knows not its own distribution qi(zk), but in fact the entire joint distribution, 

q(xt). Then it can use that joint distribution together with G to form an estimate of IE,ti(Glzi). 

That estimate is in addition to the one formed by the blind Monte Carlo process outlined above. 

One can then combine these estimates to form one superior to both. See (Lee & Wolpert 2004). 

Even when we are restricted to a blind Monte Carlo process, there are many heuristics that 

when incorporated into the update rules that can greatly improve their performance on real-world 

problems (Wolpert 2004~). In this paper we examine problems for which joint distributions q are 

known to  all agents as well as the function form of G(x) and the required expectations IE,t (Glxi) 

may be obtained in closed form. So there is no need for Monte Carlo approximations. Accordingly 

there is no need for those heuristics, and there is not even any need to using difference utilities. 

1--1, . , - 
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Empirical investigations of the effects of using difference utility functions and the heuristics may. , ’ . .  

be found in (Bieniawski & Wolpert 2004a, Bieniawski et al. 2004, Bieniawski & Wolpert 2004b). 

5 Semicoordinate Transformations 

5.1 Motivation 

Consider a multi-stage game like chess, with the stages (i.e., the instants at which one of the players 

makes a move) delineated by t .  In game theoretic terms, the “strategy” of a player is the mapping 

from board-configuration to response that specifies the rule it adopts before play starts (Fudenberg 

& Tirole 1991, Basar & Olsder 1999, Osborne & Rubenstein 1994, Aumann & Hart 1992, Fudenberg 

& Levine 1998). More generally, in a multi-stage game like chess the strategy of player i, xi, is the 

set of t-indexed maps taking what that player has observed in the stages t‘ < t into its move at 

stage t. Formally, this set of maps is called player i’s normal form strategy. 

The joint strategy of the two players in chess sets their joint move-sequence, though in gen- 

eral the reverse need not be true. In addition, one can always find a joint strategy to result in 

any particular joint move-sequence. Now typically at any stage there is overlap in what the play- 

ers have observed over the preceding stages. This means that even if the players’ strategies are 

statistically independent (being separately set before play started), their move sequences are statis- 

ticaIly coupled. In such a situation, by parameterizing the space 2 of joint-move-sequences z with 

joint-strategies x, we shift our focus from the coupled distribution P ( z )  to the decoupled product 

distribution, q(x). This is the advantage of casting multi-stage games in terms of normal form 

strategies. 

More generally, given any two spaces X and 2, any associated onto mapping : 2 --+ X, 

not necessarily invertible, is called a semicoordinate system. The identity mapping 2 -+ 2 is 

a trivial example of a semicoordinate system. Another semicoordinate system is the mapping 

from joint-strategies in a multi-stage game to joint move-sequences. In other words, changing the 

representation space of a multi-stage game from move-sequences z to strategies x is a semicoordinate 

transformation of that game. 

Intuitively, a semi-coordinate transformation is a reparameterization of how a game - a m a p  

ping from joint moves to associated payoffs - is represented. So we can perform a semicoordinate 
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, .  

transformation even in a single-stage game. Say we restrict attention to distributions over X that 
a .  * .  

are product distributions. Then changing <(.) from the identity map to some other function means 

that the players’ moves are no longer independent. After the transformation their move choices 

- the components of z - are statistically coupled, even though we are considering a product 

distribution. 

I 

Formally, this is expressed via the standard rule for transforming probabilities, 

PZ(Z E 2) <(Px) 4 dx Px(x)6(z - [(x)), J (25) 

where Px and Pz are the distributions across X and 2, respectively. To see what this rule means 

geometrically, recall that P is the space of all distributions (product or otherwise) over 2 and that 

Q is the space of all product distributions over X .  Let <(Q) be the image of in P.  Then by 

changing <(.), we change that image; different choices of ((.) will result in different manifolds ((e). 
As an example, say we have two players, with two possible moves each. So z consists of the 

possible joint moves, labelled ( O , O ) ,  (0 ,  l), ( 1 , O )  and (1,l). Have X = 2, and choose <(O,O)  = 

( O , O ) ,  ((0,l) = (1, l), < ( l , O )  = ( l , O ) ,  and <(1,1) = (0,l). Say that q is given by q l ( q  = 

0) = q2(z2 = 0) = 2/3. Then the distribution over joint-moves z is Pz(0,O) = Px(0,O) = 4/9, 

Pz(1,O) = Pz(1 , l )  = 2/9, Pz(0 , l )  = 1/9. So Pz(z) # Pz(zl)P~(z2); the moves of the players are 

statistically coupled, even though their strategies zi are independent. 

Any Pz, no matter what the coupling among its components, can be expressed as [(Px) for 

some product distribution Px for and associated <(.) In the worst case, one can simply choose X to 

have a single component, with <(-) a bijection between that component and the vector z - trivially, 

any distribution over such an X is a product distribution. Another simple example is where one 

aggregates one or more agents into a new single agent, i.e., replaces the product distribution over 

the joint moves of those agents with an arbitrary distribution over their joint moves. This is related 

to the concept coalitions in cooperative game theory, as well as to Aumann’s correlated equilibrium 

(Fudenberg & Tirole 1991, Aumann 1987, Aumann & Hart 1992). 

Less trivially, given any model class of distributions {Pz}, there is an X and associated ((.) such 

that {Pz}  is identical to ((Qx). Formally this is expressed in a result concerning Bayes nets. For 

simplicity, restrict attention to finite 2. Order the components of 2 from 1 to N .  For each index 
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i E {1,2,. . . ,N}, have the parent function Pa(i, z) fix a subset of the components of z with index 

greater than i, returning the value of those components for the z in its second argument if that 

subset of components is non-empty. So for example, with N > 5, we could have Pa(1, z) = (22,  z 5 ) .  

Another possibility is that Pa(1, z) is the empty set, independent of z. 

. 

Let A(Pa) be the set of all probability distributions P2 that obey the conditional dependencies 

implied by Pa: V Pz E A(Pa), z E 2, 

N 
P2k) = n P2(ZZlP(i, z)). 

i= 1 

By definition, if Pa(i,z)) is empty, Pz(zilPa(i,z)) is just the i’th marginal of P2, P2(zi). AS 

an example of these definitions, the dependencies {Pa(l ,z) = (z2,z3),Pa(2,z) = z4,Pa(3,z) = 

(), Pa(4, z) = ()} correspond to the family of distributions factoring as 

As proven in (Wolpert & Bieniawski 2004a), for any choice of Pa there is an associated set of 

distributions c( Qx) that equals A(Pa) exactly: 

Proposition: Define the components of X using multiple indices: For all i E {1,2,. . . , N }  and 

possible associated values (as one varies over z E 2) of the vector Pa(i,z), there is a separate 

component of x, Z,;P,(~,~).  This component can take on any of the values that zi can. Define <(.) 

recursively, starting at i = N and working to  lower i, by the following rule: V i E {1,2,. . . , N}, 

Then A(Pa) = C( Qx). 

Intuitively, each component of x in Prop. 1 is the con( 
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itional t istribution Pz(zi1 Pa(i, z)) 

for some particular instance of the vector Pa(i,z). As illustration consider again the example 

{Pa(l, z) = (22,  z3),Pa(2, z) = z4, Pa(3, z) = (),Pa(4, z) = 0). If each zi assumes the value 0 or 

1, then x has S co~npoiieiits x4, x3, ~ 2 ~ 0 ,  .Q;~ ,  zl;uu, xp01, z1;10, and xi;ii with each compocent a!so 



Table 1: Resultant partitions from the transformation of Figure l(b). 

either 0 or 1. The product distribution in X is 

Under < the distribution q4(z4)  is mapped to 44(24), q2;0(z2;0) is mapped to q2(z2Iz4 = 0), ql;ol(zl;ol) 

is mapped to q1(z11z2 = 0, z3  = l), and so on. 

Prop. 1 means that in principle we never need consider coupled distributions. It suf€ices to 

restrict attention to product distributions, so long as we use an appropriate semicoordinate system. 

As we shall see, mixture models over 2 can be also be represented using products. However, before 

discussing mixture models we show how transformation of semicoordinate systems can in principle 

be used to escape local minima in L(q).  

5.2 Semicoordinate transformations and local minima 

To illustrate another application of semicoordinate transformations, we confine ourselves to the 

case where X = 2 so that < is a bijection on X. 

We assume that the domain of the ith of n variables has size IXil. Then 1x1 = nY=, is the 

size of the search space. Each coordinate variable zi partitions the search space into [Xi/ disjoint 

regions. The partitions are such that the intersection over all variable coordinates yields a single x. 

In particular, the standard semicoordinate system relies on the partition [*, . . . , *, z i  = 0, *, . - . , *], 
. . , [*, . . . , *, zi = [Xi I - 1, *, . . . , *] for each coordinate xi. 

As a illustrative example, consider 3 binary variables where X = (0, l}3. Figure l(a) shows 

the 8 points in the search space represented in the standard coordinate system. Figure l(b) shows 

a shuf3ing of the 8 configurations under the permutation (0 1 2  3 4 5 6 7) --f (1 5 2 6 4 0 7 3). The 

resulting partitions of configurations are given in Table 1. 

c 
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Figure 1: (a) Original linear indexing for 3 binary variables XI, ~ 2 ~ x 3 .  (b) Result after applying 
the transformation to the new variables 21, z2, z3. 

Such transformations can be used to escape from local minima of the Lagrangian. To see this 

consider a coordinate transformation < from X to the new space 2 such that z = <(x), and choose 

q(z) = q(x) (i.e. do not change the associated probabilities). Then the entropy contribution to the 

Lagrangian remains unchanged, but the expected G alters from E, G(x)q(x) to15 

X X 

This means that the gradient of the maxent Lagrangian will typically differ before and after the a p  

plication of <. In particular, what was a local minimum with zero gradient before the semicoordinate 

transformation may not be a local minimum after the transformation and the resultant shuffling 

of utility values. As difficult problems typically have many local minima in their Lagrangian, such 

semicoordinate transformations may prove very useful. 

A simple example is shown in 2(a) where a Lagrangian surface for 2 binary variables is shown. 

The utility values are G(0,O) = 0, G(1,O) = 25, G(0,l)  = 18, G(1, l )  = 2. If the temperature is 7 in 

units of the objective then the global minimum is at ql(0)  = 0.95,q2(0) = 0.91 where L = -0.82. 

At this temperature there is a suboptimal local minimum (indicated by the dot in the lower left) 

located at  qT(0) = 0.14,&(0) = 0.08 where L = 0.83. 

There are a number of criteria that might be used to determine a semicoordinate transforma- 

tion to escape from this local minimum q*. Two simple choices are to  select the transformation 

that minimizes the new value of the maxent Lagrangian (i.e., minimize L(q+j), or to seiect the 

transformation which results in the largest gradient of the maxent Lagrangian at q*, (i,e,, maxi- 
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L = 0.83, grad L = [O.OO -0.001 
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Figure 2: (a) Original Lagrangian function. The suboptimal local minimum is located at q* which 
is indicated with a dot in the lower left corner. (b) The Lagrangian under the coordinate trans- 
formation which minimizes L(q*). (c) The Lagrangian under the coordinate transformation which 
maximizes the norm of the gradient at q*. The direction of the negative gradient is indicated by a 
black ZI-SW. 
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mize J/V&(q*)Il). For this simple problem the results of both these choices are shown as Figures 

2(b) and 2(c) respectively. The transformation in each of these cases can be determined from the 

shuffling of G values. 

5.3 Semicoordinate Transformations for Mixture Distributions 

We have described how the Lagrangian measuring the distance of a product (mean field) distribution 

to a Boltzmann distribution may be minimized in a distributed fashion. We now extend these results 

to mixtures of product distributions, in order to represent multiple product distribution solutions at 

once. As mentioned above, we can always do that by means of a semicoordinate transformation of 

the underlying variables, allowing us to express that mixture distribution as the image of a product 

distribution over a different space. In this section we demonstrate this explicitly. 

Let x E X indicate the new set of variables in a space of dimension dx, where z E 2 is the 

original (pre-transformation) space over which G is defined. Then a product distribution over X 

(where dx > n, the dimension of Z), and an appropriately chosen mapping C : X --+ 2 induces a 

mixture distribution over 2. 

To see this consider an M component mixture distribution over n variables, which we write as: 

q(z )  = E,"=, qO(m)qm(z) with C,"=, qo(m) = 1 and qm(z)  = n?=, qy(zi) .  We can express this 

q(z) as (the image of) a product distribution over a space X of dimension dx = 1 + M n .  Intuitively, 

the first dimension of X (indicated as zo E [ l ,M])  labels the mixture, and the remaining Mn 

dimensions (indicated as xy E 2i) correspond to each of the original n dimensions for each of the 

M mixtures. 

0 0  M More precisely, write out the X-space product distribution as qx(x)  = q (z ) nm=, qm(xm) 

with q"(x") = HE, qy(zy) for x = [zo, XI,. . . , xM] and xm = [zT,. . . ,471. The density in X 

and 2 are related as usual by q(z) = E, q,y(x)6(z-<(x)) for our vector-valued mapping C : X -+ 2, 

with the delta function of vectors being understood component-wise. If we label the components 
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o f ~ s o t h a t z i = l i ( z o , x l , . . .  ,x M )-xi A xo wefind 

Thus, under < the product distribution qx is mapped to the mixture of products q(z)  = Em qO(m)qm(z) 

(after relabelling xo to m), as desired. 

The maxent Lagrangian of the X product distribution qx(x)  is 

This Lagrangian contains a term pushing us (as we search for the minimizer of that Lagrangian) to 

maximize the entropy of the mixture weights. However, it provides no incentive for the distributions 

qm to differ from each other. 

If we wish to have the qm differ from one another, we can instead consider the maxent Lagrangian 

over q(z) .  In this case 

Z X 

The entropy term differs crucially in these two maxent Lagrangians. To see this add and subtract 

T Em qO(m)S(qm) to the 2 Lagrangian to find 

where each L(qm) is a maxent Lagrangian as given by Eq. (l), and J ( q )  2 0 is a modified version 
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of the Jensen-Shannon (JS) distance, ' . .  

Conventional Jensen Shannon distance is defined to compare two distributions to each other, and 

gives those distributions equal weight (Lin 1991). In contrast, the generalized JS distance J ( q )  

concerns multiple distributions, and weights them nonuniformly, according to qO(m). 

J ( q )  is maximized when the qm are all different from each other. Thus its inclusion in our 

Lagrangian pushes us to have the mixing components {qm(x)Jm = 1,. . . , M }  be far apart (in X) 

from one another. In this, we can view Eq. (27) as a novel derivation of (a generalized version of) 

Jensen Shannon distance. Unfortunately, it also couples all of the variables (because of the sum 

inside the logarithm), preventing a highly distributed solution. 

To address this, in this paper we replace J ( q )  in ,C:z(q) with another function which lower- 

bounds J ( q )  but which requires less communication between agents. It is this modified Lagrangian 

that we will minimize. 

5.4 A Variational Lagrangian 

Following (Jaakkola & Jordan 1998), we introduce M variational functions w(zlm) and lower-bound 

the true JS distance with 

m z  m 
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Now replace M of the - In terms with the lower bound - lnz 2 -vz + lnv + 1 obtained from the 

Legendre dual of the logarithm to find 

m z  m 

m z m 

Optimization over w and v maximizes this lower bound. To further aid in distributing the algorithm 

we restrict the class of variational ~ ( z l m )  to products: w(zlm) = ni wi(zi1m). For this choice 

where AT'm 45 Ez, qp(zi)wi(zilm),  Am,m Lk @ 2=1 A"m, BYym A E, qy(zi) lnwi(zilm), and 

Bmjm e At any temperature T the variational Lagrangian which must be mini- 

mized with respect to Q, w and I/ (subject to appropriate positivity and normalization constraints) 

is then 

L2(% w, 4 = qO(m>C(qrn> - TJ(q,  w, 4 (29) 
m 

with J ( q ,  w, v) given by Eq. (28). 

6 Minimizing the Mixture Distribution Lagrangian 

Equating the gradients with respect to 20 and v to zero gives 

The dependence of Cz on qO(m) is particularly simple: L2(q, W, v) 

up to  qO-independent terms and where 

E, qO(m)E(m)-T(S(qo)+l) 

E(m) k Eqm (G) - T S[qm] + Bm7m - E A"7"vfi + In vm 
m 
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Thus, the mixture weights are Boltzmann distributed with energy function &(VI): 

The determination of qy(zi) is similar. The relevant terms in Cz involving qy(zi) are Lz rz 

qO(m) E, Em(zi)4yyzi) - TS(Q?) where 

As before the conditional expectation (GJzi)  is G(zi, z-i)qri(z-i). The mixture probabil- 

ities are thus determined as 

6.1 Agent Communication 

These results require minimal communication between agents. An agent, call this the 0-agent, is 

assigned to manage the determination of qo(m), and (i, m)-agents manage the determination of 

q?(zi). The M (i,m)-agents for a k e d  i communicate their wi(zilm) to determine A Y ’ ~ .  These 

results along with the Bzy’m from each (i,m) agent are then forwarded to the 0-agent who forms 

A”?* and broadcasts this back to all (i,m)-agents. With these quantities and the local 

estimates for E ~ ~ ( G l z i ) ,  all qr can be updated independently. 

7 Experiments 

In this section we demonstrate our methods on some simple problems. To keep this already lengthy 

paper from being too large, this section is meant to be illustrative only. The reader is directed to 

(Bieniawski & Wolpert 2004u, Bieniawski et al. 2004, Bieniawski & Wolpert 2004b, Lee & Wolpert 

2004, Wolpert & Lee 2004, Macready & Wolpert 2004~)  for many other related experiments. 

As our first example we test the probability collective method On two different problems: a 

k-sat constraint satisfaction problem having mu!tip!e femsibk soluticcs, aod optimization of an 

unconstrained optimization of an N K  function. 
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1 

Figure 3: (a) Evolution of Lagrangian value (solid line), expected constraint violation (dotted line), 
and constraint violations of most likely configuration (dashed line). (b) P(G) after minimizing the 
Lagrangian for the first 3 multiplier settings. At termination P(G) = 6(G). 

7.1 k-sat 

The k-sat problem is perhaps the best studied CSP (Mezard, Parisi & Zecchina 2002). The goal 

is to assign N binary variables zi values so that C clauses are satisfied. The ath clause involves 

k variables labelled by va,j E [l, N] (for j E [l, k]), and k binary values associated with each a 

and labelled by a,j. The ath clause is satisfied iff Vi=l[zv,,j = a,,j] is true so we define the ath 

constraint as 

(1 otherwise 

- As the ath clause is violated only when all z ~ , , ~  = a,,j (with i7 4 nota),  the Lagrangian over 

product distributions can be written as L(q) = XTc(q) - TS(q)  where c(q) is the C-vector of 

expected constraint violations whose ath component is ca(q) 4 E, ca(z)q(z) = nj=, qv,,j (T,,j), 

and X is the C vector of Lagrange multipliers. The only communication required to evaluate G 

and its conditional expectations is between agents appearing in the same clause. Typically, this 

communication network is sparse; for the N = 100, k = 3, C = 430 variable problem we consider 

each agent interacts with only 6 other agents on average. 

k 

We first present results for a single product distribution. For any k e d  setting of the Lagrange 

multipliers, the Lagrangian is minimized by iterating Eq. (9). Had the minimization been done by 
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iteration constraints 

Figure 4: Each constraint’s Lagrange multiplier versus the iterations when they change. 

the Brouwer method, any random subset of variables, no two of which appear in the same clause, 

could be updated simultaneously while still ensuring that the Lagrangian would decrease at each 

iteration. 

The minimization is terminated at a local minimum q*. If all constraints are satisfied at q* we 

return the solution z* = arg m a ,  q*(z )  otherwise the Lagrange multipliers are updated according 

to Eq. Firstly, 

those constraints which are violated most strongly have their penalty increased the most, and 

consequently, the agents involved in those constraints are most likely to alter their state. Secondly, 

the Lagrange multipliers contain a history of the constraint violations (since we keep adding to A) 

so that when the agents coordinate on their next move they are unlikely to return a previously 

violated state. This mimics the approach used in taboo search where revisiting of configurations 

is explicitly prevented, and aids in an efficient exploration of the search space. Lastly, rescaling 

the Lagrangian after each update of the multipliers by l T X  = E, A, gives C(q) = ATc(q) - f ’S (q )  

where = A / l T A  and T = T / l T A .  Since C,ia = 1 the first term reweights clauses according 

to their expected violation, while the temperature !!? cools in an automated way as the Lagrange 

multipliers increase. Cooling is most rapid when the expected constraint violation is large and 

slows as the optimum is approached. The parameters ai thus govern the overall rate of cooling. 

We used the fixed value ai = 0.5. 

(10). In the present context, this updating rule offers a number of benefits. 

Figure 3 presents results for a 100 variable IC = 3 problem using a single mixture. The problem 
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' . is satisfiable formula ~€100-01. cnf from SATLIB (www. satlib.org). It was generated with the 

ratio of clauses to variables being near the phase transition, and consequently has few solutions. 

Fig. 3(a) shows the variation of the Lagrangian, the expected number of constraint violations, and 

the number of constraints violated in the most probable state zmp = arg max, q(z)  as a function of 

the number of iterations. The starting state is the maximum entropy configuration, and the starting 

temperature is T = 1.5 . lop3. The iterations at which the Lagrange multipliers are updated are 

indicated by vertical dashed lines which are clearly visible as discontinuities in the Lagrangian 

values. To show the stochastic underpinnings of the algorithm we plot in Fig. 3(b) the probability 

density of the number of constraint violations obtained as P(G) = C,q(z)S(G - C , C ~ ( Z ) ) . ~ ~  
Figure 4 shows the evolution of the renormalized Langrange multipliers i. At the first iteration the 

multiplier for all clauses are equal. As the algorithm progresses weight is shifted amongst difficult 

to satisfy clauses. 

I 

A 

Results on a larger problem with multiple mixtures are shown in Fig. 5(a). This is the 250 

variable/l065 clause problem uf250-01. cnf from SATLIB with the first 50 clauses removed so that 

the problem has multiple solutions. The optimization was performed by selecting a random subset 

of variables, no two of which appear in the same clause at each iteration, and updating according 

to Eqs. (30), (31), (32), and (33). After convergence the Lagrange multipliers are updated. The 

initial temperature is lo-'. We plot the number of constraints violated in the most probable 

state of each mixture as a function of the number of updates. as  well as the expected number of 

violated constraints. After 8000 steps three distinct solutions have been found along with a fourth 

configuration which violates a single constraint. 

7.2 Minimization of N K  Functions 

The N K  model defines a family of tunably difficult optimization problems (Kauffman & Levin 

1987). The objective of N binary variables is defined as the average of N contributions local 

to each variable zi and involving 0 2 K _> N - 1 other randomly chosen variables Z ; - - - Z ? :  

G(z )  = N-' Ei(zi; z:, . . . z r ) .  For each of the 2K+1 local configurations Ei is assigned a 

value drawn uniformly from 0 to i. K controis the number of local minima; -under Hamming 

neighborhoods K = 0 optimization landscapes have a single global optimum and K = N - 1 

landscapes have on average 2N/ (N  + 1) local minima. Further properties of N K  landscapes may 
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Figure 5: (a) The solid curves show the number of unsatisfied clauses in the most probable config- 
uration zmp of each of the 4 mixtures vs iterations. The topmost solid black line plots the expected 
number of violations, and the dashed black line shows the approximation to the JS distance. (b) 
The solid curves show the evolution of the G value of the best zmp configurations for each of 5 mix- 
tures versus number of iterations. The dashed black line shows the corresponding approximation 
to the JS distance. 

be found in (Durrett & Limic 2001). Fig. 5(b) plots the energy of a 5 mixture model for a multi- 

modal N = 300 K = 2 function. The K -  1 spins other than i upon which Ei depends were selected 

at random. At termination of the PC algorithm (at a small but non-zero temperature), five distinct 

configurations are obtained with the nearest pair of solutions having Hamming distance 12. Note 

that unlike the IC sat problem which has multiple configurations all having the same global minimal 

energy, the JS distance (the dashed curve) of Fig. 5(b) drops to zero as the temperature decreases. 

This is because at exactly zero temperature there is no term forcing different solutions, and the 

Lagrangian is minimized by having all mixtures converge to delta functions at the lowest objective 

configuration. 

8 Relation of PC to other work 

There has been much work from many fields related to PC. The maxent Lagrangian has been used 

in statistical physics for over a, cent,iiry under the rubric of “free energy”. Its derivation in terms of 

information theoretic statistical inference was by Jaynes (Jaynes 1957). The maxent Lagrangian has 

also appeared occasionally in game theory as a heuristic, without a statistical inference justification 
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' . (be it information-theoretic or otherwise) (Fudenberg & Levine 1998, Shamma & Arslan 2004).18 

In none of this earlier work is there an appreciation for its relationship with the related work in 

other fields. 

In the context of distributed control/optimization, the distinguishing feature of PC is that it 

does not view the variable x as the fundamental object, but rather the distribution across it, q. 

Samples of that distribution are not the direct object of interest, and in fact are only used if 

necessary to estimate functionals of q. The fundamental objective function is stated in terms of q. 

As explicated in the next subsection, the associated optimization algorithms are related to some 

work in several fields. Heretofore those fields have been unaware of each other, and of the breadth 

of their relation to information theory and game theory. 

Finally, we note that the maxent or qp Lagrangian C(q) = E,(G) - TS(q) can be viewed as 

a barrier-function (interior point) method with objective E,(G). An entropic barrier function is 

used to enforce the constraints qi(xi) 2 0 Vi and xi, with the constraint that all qi sum to 1 being 

implicit. 

8.1 Various schemes for updating q 

We have seen that the qp Lagrangian is minimized by the product distribution q given by 

Direct application of these equations that minimize the Lagrangian form the basis of the Brouwer 

update rules. Alternatively, steepest descent of the maxent Lagrangian forms the basis of the 

Nearest Newton algorithm. These update rules have analogues in conventional (non-PC) opti- 

mization. For example, Nearest-Newton is based on Newton's method, and Brouwer updating is 

similar to block-relaxation. This is one of the advantages of embedding the original optimization 

problem involving x in a problem involving distributions across x: it allows us to solve problems 

over non-Euclidean (e.g., countable) spaces using the powerful methods already well-understood 

for optimization over Euclidean spaces. 

However there are other PC update rules that have no direct analogue in such well-understood 

methods for Euclidean space optimization. Algorithms may be developed that minimize the pq 
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Lagrangian D(p~Ilq)  where m(x) = exp(-G(x)/T)/Z(T) with Z(T) being the normalization of . , . 
the Boltzmann distribution. The pq Lagrangian is minimized by the the product of the marginals of 

the Boltzmann distribution, i.e. qi(zi) = Jdx-i p ~ ( x ) .  Another example of update rules without 

Euclidean analogues are the iterative focusing update rules described in (Wolpert 2004b). Iterative 

focusing updates are intrinsically tied into the fact that we’re minimizing (the distribution setting) 

an expectation value. 

A subset of update rules arising from qp and pq Lagrangians are described in (Wolpert 2004b). 

In all cases, the updates may be written as multiplicative updating of q. The following is a list of 

the update ratios rp,i(si)  q;+l(si)/q:(si) of some of those rules. In all of these, FG is a probability 

distribution over II: that never increases between two z’s if G does (e.g., a Boltzmann distribution 

in G(z)). In addition, const is a scalar that ensures the new distribution is properly normalized 

and a is a stepsize.lg 

Gradient descent of qp distance to  FG: 

Nearest Newton descent of qp distance to  FG: 

Brouwer updating for qp distance to  FG: 

Importance sampling minimization of pq distance to FG: 

const x IE,~ (-,xi) FG 
Qt 
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Iterative focusing of q with focusing function FG using qp distance and gradient descent: 

Iterative focusing of ij with focusing function FG using qp distance and Nearest Newton: 

Iterative focusing of 4- with focusing function FG using qp distance and Brouwer updating: 

Iterative focusing of 4 with focusing function FG using pq distance: 

Note that some of these update ratios are themselves proper probability distributions, e.g., the 

Nearest Newton update ratio. 

This list highlights the ability to go beyond conventional Euclidean optimization update rules, 

and is an advantage of embedding the original optimization problem in a problem over a space of 

probability distributions. Another advantage is the fact that the distribution itself provides much 

useful information (e.g., sensitivity information). Yet another advantage is the natural use of Monte 

Carlo techniques that arise with the embedding, and allow the optimization to be used for adaptive 

control. 

There are also overlaps of PC with evolutionary approaches to optimization (e.g., genetic algo- 

rithms). Many techniques in the evolutionary computation community use Boltzmann distributions 

in ad hoc ways to update a “population” of x’s, e.g., “truncation selection’’ and “Boltzmann selec- 

tion” (G.Ficici, Melnik, & Pollack 2000). These rules are not formally derived, and do not directly 

concern themselves with distributions 4. However some of them are similar to the PC update 

rules, in particular iterative focusing rules, only applied to sets of Monte Carlo sample points (the 
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population) rather than to q. There are other techniques which also use Boltzmann distributions. 

and samples, although without a multi-member population, e.g., simulated annealing. 

. 

These early techniques do not consider the underlying distribution that gets sampled to produce 

the population. Such consideration was introduced in PBIL (Baluja 2002), MIMIC (Bonet, Jr. & 

Viola 1996) and other EDA algorithms (Larraaga & Lozano 2001), followed shortly by the powerful 

CE method (Rubinstein & Kroese 2004). 

However while considering distributions] none of this early work casts the objective as a min- 

imization of a functional of that distribution. Accordingly, all the power arising from minimizing 

Euclidean vectors is absent in this work. There is none of the second order methods, difference 

utilities] or data-ageing that appear to be crucial for very large problems. Nor does this earlier 

work exploit semicoordinate transformations (the topic of this paper), oracle-based methods (Lee 

& Wolpert 2004), etc. Despite this, the results in (Rubinstein & Kroese 2004) in particular are 

compelling. (Note that the CE method, as applied, is identical to Eq. (42), although with a different 

justification.) 

There is other previous work on optimization that has directly considered the distribution q as 

the object of interest. In particular deterministic annealing (Duda et al. 2000) is “bare-bones” 

parallel Brouwer updating. This involves no data-aging (or any other scheme to avoid thrashing of 

the agents), difference utilities, etc..20 

Most tantalizingly, probability matching (Sabes & Jordan 1996) uses Monte Carlo sampling to 

optimize a functional of q. However this work was in the context of a single agent, did not exploit 

techniques like data-ageing, and was not pursued. 

Other work has both viewed q as the fundamental object of interest and used techniques like 

data-aging and difference utilities (Wolpert, Tumer & Frank 1999, Wolpert et al. 2003, Wolpert 

2003~). However this work was not based on information-theoretic considerations and had no 

explicit objective function for q. It was the introduction of such considerations that resulted in PC. 

Finally, shortly after the introduction of PC a variant of its Monte Carlo version of parallel 

Brouwer updating has been introduced, called the MCE method (Rubenstein 2005). In this variant 

the anneaiing of the Lagrangian doesn’t involve changing the temperature 0, but instead changing 

the value of a constraint specifying IE,(G). Accordingly, rather than jump directly to the (p- 

specified) solution given above, one has to solve a set of coupled nonlinear equations relating all 
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. the qi. (Another distinguishing feature is no data-ageing, difference utilities or the like are used in 

the MCE method.) The MCE method has been justified with the KL argument reviewed above 

rather than with "ratchet"-based maximum entropy arguments. This has redrawn attention to  the 

role of the argument-ordering of the KL distance, and how it relates Brouwer updating and the CE 

method. 

9 Conclusion 

A distributed constrained optimization framework based on probability collectives has been pre- 

sented. Motivation for the framework was drawn from an extension of full-rationality game theory 

to bounded rational agents. An algorithm that is capable of obtaining one or more solutions simul- 

taneously was developed and demonstrated on two problems. The results show a promising, highly 

distributed, off-the-shelf approach to constrained optimization. 

There are many avenues for future exploration. Alternatives to the Lagrange multiplier method 

used here can be developed for constraint satisfaction problems. By viewing the constraints as 

separate objectives, a Pareto-like optimization procedure may be developed whereby a gradient 

direction is chosen which is constrained so that no constraints are worsened. This idea is motivated 

by the highly successful WalkSAT (Selman, Kautz & Cohen 1996) algorithm for Ic-sat in which 

spins are flipped only if no previously satisfied clause becomes unsatisfied as a result of the change. 

Probability collectives also offer promise in devising new methods for escaping local minima. 

Unlike traditional optimization methods where monotonic transformations of the objective leave lo- 

cal minima unchanged, such transformations will alter the local minima structure of the Lagrangian. 

This observation, and alternative Lagrangians (see (Rubinstein 2001) for a related approach using 

a different minimization criterion) offer new approaches for improved optimization. 
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